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Corrigendum

A self-avoiding walk model of random copolymer adsorption
E Orlandini, M C Tesi and S G Whittington 1999 J. Phys. A: Math. Gen. 32 469–477

There is an error in the proof of lemma 3.4 for α > 0, which can be remedied, as we outline
below, by using (3.22) and (3.13) directly. For fixed α � 0 it follows from (3.22) that

Z∗
n(α|χ) � eκdn+o(n) + eo(n) max

m
[Z+

m(α|χ̄ (1))Z+
n−m(α|χ(2))]

and using (3.13) this implies that

Z∗
n(α|χ) � eκdn+o(n) + eo(n) max

m
max

0�i�5
max

0�j�5
[Lm+i (α|χ(1′))Ln−m+j (α|χ(2′))]

� eκdn+o(n) + eo(n) max
0�i�10

Ln+i (α|χ(3))

where χ(1′) and χ(2′) are colourings derived by extending the colourings χ̄ (1) and χ(2)

respectively, and where χ(3) is the colouring resulting from the concatenation of the two
loops. For any α � 0 Ln(α|χ) � Ln(0, χ) � eκdn−o(n). Moreover, Ln(α|χ) � Ln+i (α|χ ′) for
any i � 0 and any χ ′ which is an extension of χ . Hence

Z∗
n(α|χ) � eo(n)Ln+10(α|χ(3)).

Taking logarithms, dividing by n and averaging over colourings gives

〈n−1 log Z∗
n(α|χ)〉 � 〈n−1 log Ln+10(α|χ(3))〉 + o(1) = κ̄(α) + o(1)

which is the result of (3.23) and proves lemma 3.4.
We also note that the proof of lemma 3.2 can be simplified by disconnecting the walk ω

into three subwalks, the first running from vertex 0 to vertex m−1, the second being the single
edge lying in the plane z = 0 from vertex m− 1 to vertex m, and the third running from vertex
m to vertex n. In the reconnection process the orientation of the single edge (from vertex m−1
to vertex m) can be changed to avoid having to add an additional edge in the plane z = 0, in
the middle of the walk.

We thank Dr Edna James for pointing out the problem with our original proof.
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