A self-avoiding walk model of random copolymer adsorption

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 383473
(http://iopscience.iop.org/0305-4470/38/15/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.66
The article was downloaded on 02/06/2010 at 20:09

Please note that terms and conditions apply.

Corrigendum

A self-avoiding walk model of random copolymer adsorption

E Orlandini, M C Tesi and S G Whittington 1999 J. Phys. A: Math. Gen. 32 469-477
There is an error in the proof of lemma 3.4 for $\alpha>0$, which can be remedied, as we outline below, by using (3.22) and (3.13) directly. For fixed $\alpha \geqslant 0$ it follows from (3.22) that

$$
Z_{n}^{*}(\alpha \mid \chi) \leqslant \mathrm{e}^{\kappa_{d} n+o(n)}+\mathrm{e}^{o(n)} \max _{m}\left[Z_{m}^{+}\left(\alpha \mid \bar{\chi}^{(1)}\right) Z_{n-m}^{+}\left(\alpha \mid \chi^{(2)}\right)\right]
$$

and using (3.13) this implies that

$$
\begin{gathered}
Z_{n}^{*}(\alpha \mid \chi) \leqslant \mathrm{e}^{\kappa_{d} n+o(n)}+\mathrm{e}^{o(n)} \max _{m} \max _{0 \leqslant i \leqslant 5} \max _{0 \leqslant j \leqslant 5}\left[L_{m+i}\left(\alpha \mid \chi^{\left(1^{\prime}\right)}\right) L_{n-m+j}\left(\alpha \mid \chi^{\left(2^{\prime}\right)}\right)\right] \\
\leqslant \mathrm{e}^{\kappa_{d} n+o(n)}+\mathrm{e}^{o(n)} \max _{0 \leqslant i \leqslant 10} L_{n+i}\left(\alpha \mid \chi^{(3)}\right)
\end{gathered}
$$

where $\chi^{\left(1^{\prime}\right)}$ and $\chi^{\left(2^{\prime}\right)}$ are colourings derived by extending the colourings $\bar{\chi}^{(1)}$ and $\chi^{(2)}$ respectively, and where $\chi^{(3)}$ is the colouring resulting from the concatenation of the two loops. For any $\alpha \geqslant 0 L_{n}(\alpha \mid \chi) \geqslant L_{n}(0, \chi) \geqslant \mathrm{e}^{\kappa_{d} n-o(n)}$. Moreover, $L_{n}(\alpha \mid \chi) \leqslant L_{n+i}\left(\alpha \mid \chi^{\prime}\right)$ for any $i \geqslant 0$ and any χ^{\prime} which is an extension of χ. Hence

$$
Z_{n}^{*}(\alpha \mid \chi) \leqslant \mathrm{e}^{o(n)} L_{n+10}\left(\alpha \mid \chi^{(3)}\right)
$$

Taking logarithms, dividing by n and averaging over colourings gives

$$
\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle \leqslant\left\langle n^{-1} \log L_{n+10}\left(\alpha \mid \chi^{(3)}\right)\right\rangle+o(1)=\bar{\kappa}(\alpha)+o(1)
$$

which is the result of (3.23) and proves lemma 3.4.
We also note that the proof of lemma 3.2 can be simplified by disconnecting the walk ω into three subwalks, the first running from vertex 0 to vertex $m-1$, the second being the single edge lying in the plane $z=0$ from vertex $m-1$ to vertex m, and the third running from vertex m to vertex n. In the reconnection process the orientation of the single edge (from vertex $m-1$ to vertex m) can be changed to avoid having to add an additional edge in the plane $z=0$, in the middle of the walk.

We thank Dr Edna James for pointing out the problem with our original proof.

