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Corrigendum

A self-avoiding walk model of random copolymer adsorption
E Orlandini, M C Tesi and S G Whittington 1999 J. Phys. A: Math. Gen. 32 469477

There is an error in the proof of lemma 3.4 for @ > 0, which can be remedied, as we outline
below, by using (3.22) and (3.13) directly. For fixed & > 0 it follows from (3.22) that

Zy(aly) < e+ e max(Z) @l X ) Z;_,, (@l )]

and using (3.13) this implies that

Z¥(alx) < e 4™ max max max [Lyi (@|x )Ly (@] x )]
m 0<i<50<j<5

<o 4™ max Lyy(alx™)
0<i<10

where x1” and x®’ are colourings derived by extending the colourings ¥ and x@
respectively, and where x® is the colouring resulting from the concatenation of the two
loops. Forany o > 0 L, («|x) = L, (0, x) > e<"~°™_ Moreover, L, (a|x) < L. (|x’) for
any i > 0 and any x’ which is an extension of x. Hence

Zi(alx) < e Lol x™).
Taking logarithms, dividing by n and averaging over colourings gives

(n"og Zi(a|x)) < (7" og Lo x®)) +o(1) = k(@) +o(1)
which is the result of (3.23) and proves lemma 3.4.

We also note that the proof of lemma 3.2 can be simplified by disconnecting the walk @
into three subwalks, the first running from vertex 0 to vertex m — 1, the second being the single
edge lying in the plane z = O from vertex m — 1 to vertex m, and the third running from vertex
m to vertex n. In the reconnection process the orientation of the single edge (from vertex m — 1
to vertex m) can be changed to avoid having to add an additional edge in the plane z = 0, in

the middle of the walk.
We thank Dr Edna James for pointing out the problem with our original proof.
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